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A Semiclassical Reactive Flux Method for the Calculation of

Condensed Phase Activated Rate Constants

Diane E. Sagnella, Jianshu Cao, and Gregory A. Voth

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-

6323, USA

ABSTRACT

A semiclassical reactive flux alg3rithm for calculating thermally activated rate con-

stants is presented which is based on a semiclassical transition state theory due to Chap-

man, Garrett, and Miller [J. Chem. Phys. 63 (1975) 27101. This reactive flux technique,

when combined with the semiclassical TST, enables one to describe dynamical recross-

ings of the transition state on the same footing as tunneling effects. Most importantly,

the method is readily applied to nonlinear multidimensional systems over a wide range of

temperatures. It will be shown that the method works very well for a variety of existing

models.
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1. Introduction

It is highly desirable to have computational methods which allow for the efficient and

accurate numerical evaluation of activated rate constants in complex systems. It is per-

haps no surprise, therefore, that the preeminent theory of this sort-classical transition

state theory (TST)-is one of the central theoretical tools in modern chemistry [1]. Yet,

classical transition state theory is lacking on at least two accounts. First, the fundamental

assumption of classical TST is based on the notion that the recrossings of trajectories

through the transition state can be neglected. Second, the classical TST formulation ne-

glects quantum mechanical effects such as tunneling and mode quantization. Fortunately,

the influence of classical recrossings can be accounted for by analytic approaches [2] or with

the reactive flux correlation function methodology [3], while quantum effects can be de-

scribed by semiclassical [4-9] or quantum mechanical [10,11] TST-like approaches (QTST).

One of the latter QTST approaches, path integral QTST [10], has also recently been com-

bined by ansatz with a reactive flux-like formulation so that both recrossing and quantum

effects in activated rate processes can be estimated [12]. A different approach within the

path integral QTST is based on an analytic theory [131 for the recrossing corrections (i.e.,

the "transmission coefficient" problem), but the full numerical implementation of the path

integral QTST expression is used to determine the quantum corrections to the classical

TST rate.

In the present paper, a different semiclassical TST (SCTST) formulation proposed

nearly 20 years ago by Chapman, Garrett, and Miller (CGM) (8] is revisited. As it turns

out, it is quite illuminating to re-examine this SCTST formulation in the light of several

more recent developments in the field of condensed phase activated dynamics [2,3]. To be

specific, it will be shown that the CGM semiclassical theory is continuously accurate and

stable at temperatures both above and below the so-called "crossover" temperature (i.e.,

the temperature below which the dynamics becomes dominated by tunneling). Moreover,

the accuracy of the CGM formula will be shown to be improved by rotation of the TST

dividing surface. Finally, and most importantly, the SCTST formula is shown to form

the basis for a semiclassical reactive flux algorithm [3] which allows one to estimate both

the quantum and dynamical corrections to the classical TST rate constant on the same
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footing.

The present paper is organized as follows: In Sec. 2, the basic CGM formulation

of a SCTST expression is reviewed and the attributes of the formula are discussed. The

semiclassical reactive flux algorithm based on the SCTST formula will also be described.

Next, in See. 3 several applications of the method will be presented which are designed to

test the theory against known results. Concluding remarks are then given in Sec. 4.

2. Theory

A. Semiclassical TST of Chapman, Garrett, and Miller

The basis for the SCTST formulation of CGM [8] is the semiclassical perspective

on Boltzmann statistical mechanics developed by Miller [14]. For example, the diagonal

matrix elements of the Boltzmann density matrix (i.e., the particle density) are given by

p(q) = (qiexp(-g3H)Jq) (1)

where 3 = (kBT)-'. By splitting the Boltzmann operator into a product of two equal

parts, and by inserting a complete set of states between those parts, the particle density

can be re-written as [14]

p(qo) = JdqlJ(qole-,1H/21ql)2 . (2)

Upon introduction of the semiclassical limit for the imaginary time propagator elements

(qole-l/ 2I1q1 ý, the particle density then takes the form [14]

p(qo) = h-N Jdqi aqi/apo-'exp J{ 2 / drH[p(T),q(r)]} (3)

where I9qi/apol is the Jacobian relating the coordinate at imaginary time ri = h/3/2 to

its momentum at imaginary time To = 0, H[p(r), q(r)] is the value of the Hamiltonian,

and N is the dimensionality of the system. The trajectories which are used to calculate

the value of the Hamiltonian in eq. (3) are generated by the differential equations

-3-



OH OH41(r) = -- ; l(r) = l-) (4)
0p('r)0()

subject to the initial conditions q(O) = qo and p(O) = po. From eq. (4), it is seen that

the trajectories are propagated on the upside-down potential, -V(q), and thereby have

excursions into the classically forbidden regions of the potential.

An insightful trick due to Miller [14] is to perform a change of variables from the

differential final position elements dql to the differental initial momentum elements dpo.

The Jacobian factor from this transformation cancels the Jacobian factor in eq. (3) and

one is left with only an integration over initial momenta. This step in itself is a simplifying

feature since the calculation of the semiclassical canonical density no longer requires the

solution of a classical trajectory problem having double ended boundary conditions. For

example, the semiclassical partition function in Miller's theory is given by [14]

Qsc = I/dqopsc(qo)

= h-N dpodqoexp { f 2[/2 dH[p(r), q(r)] } (5)

Stratt and Miller [15] have noted that the underlying semiclassical phase space distri-

bution function in this theory is given by

Wsc(po, qo) = h -N exp {- /2drH[p(r), q(Tr)] (6)

Actually, since Liouville's theory implies the conservation of phase space differential ele-

ment [i.e., dqodpo = dq(r)dp(r)J, then eq. (6) can be rewritten for an arbitrary time shift

ro to give the more general semiclassical phase space distribution function [8]

Wsc (po, qo) = hINep 2 h32r dTrH[p(-), q(r)]1  (7)
I - T foI

The trajectories used to calculate H[p(r), q(r)] in this distribution function begin with

values (po, qo) at time r = 0, then are propagated on the upside-down potential [cf. eq.

(4)] backward in time to r = -To and forward in time to r = hO - "o.
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The optimal choice of -r0 in eq. (7) will depend on the quantity which is being averaged.

(The semiclassical partition function Qsc in eq. (5), however, is independent of the choice

of ro [8].) For example, if one calculates the semiclassical average (q2) with the distribution

in eq. (7) for a simple harmonic oscillator of frequency w, one finds

(q 2  
- h sinh(h/w - 2wn'o) + sinh(2wro)

2mw 2sinh2 (h,3w/2) (8)

For this example, only the choice of rO = 0 or h/,32 gives the correct answer.

In general, one does not know the optimal choice of rO, except for certain analytically

solvable models. Based on such information, however, one can assume a certain value for

ro when using the semiclassical distribution function for non-trivial systems. It is in this

same spirit that CGM suggested an approximate SCTST expression for the rate constant

[8]. That expression for the forward rate constant of a general system is given by

ksCTST = Qlh-N ... IdPdQdpdqb(q* - q)-Ph(p)

xexp I j- T f TO drH[p(,r),q(ir),P(r),Q(r)1 , (9)

where QR is the partition function of the system in the reactant state, q and p are, respec-

tively, the reaction coordinate and its conjugate momentum, q = q* defines the dividing

surface along the reaction coordinate, h(...) is the unit step function, and Q and P are all

other coordinates and conjugate momenta of the system, respectively. The subscript "0"

on the momenta and coordinates in the integrals have been dropped here, but it should be

remembered that these variables provide the initial conditions for the trajectories which

are propagated forward and backward in time on the upside-down potential in order to

calculate H(p(r), q(r), P(r), Q(r)] in eq. (9).

Based on their analysis of the simple parabolic barrier, CGM concluded that the most

reasonable choice of ro in eq. (9) is rO = h13/4. More specifically, this choice of ro is the

only one that gives the exact rate constant for the parabolic barrier model. Interestingly,

this result for the parabolic barrier coincides with the minim=~m of the flux in eq. (9) with
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respect to the choice of T"o. We therefore suggest, without proof, that the best choice of

To in the SCTST formula [eq. (9)] is the one that minimimizes the imaginary time action

in the exponential of eq. (9). For example, at any initial point in the reaction coordinate

phase space (p, q), the imaginary time action for a one-dimensional barrier problem is given

by

h,3/2 roh#/2-7-o

S(ro) = H(-r)ddT = E + 2 T drVb[q(-r)] , (10)
J, -Tr ,J -- TO

where E is the conserved energy of the particle moving on the inverted barrier potential

-Vb(q). If the extremum of the action is taken, one obtains the condition for ro:

Vb[q(--ro)] = Vb[q(io/2 - ro)] (11)

Thus, the condition of T"o = h/3/4 can be derived from eq. (11) for a symmetric barrier

uncoupled to a bath. In view of the additional complications in solving eq. (11) for the

most general case, the choice of -"o = h0/4 would seem to be a reasonable, or at least an

expedient, choice for 7o for more complicated unsymmetrical, many-dimensional systems.

Before preceeding to the reactive flux formulation based on eq. (9), some consideration

should be given to actual evaluation of the SCTST rate constant for a general condensed

phase activated rate process. Clearly, the direct numerical evaluation of the phase space

integral in eq. (9) is prohibitively time-consuming for a many-dimensional system. For-

tunately, the standard techniques of computer simulation in statistical mechanics can be

used. For example one can formulate the evaluation of eq. (9) in terms of a Monte Carlo

average by using a reference Hamiltonian, HeJ (7). Equation (9) is then rewritten as

= 1re f x [ -- " '" ( 7_o )kSCTST - kSCTST ex[ drAH(r) , (12)

where the average (.. ")rf denotes averaging in the semiclassical flux-weighted distribution

function for the reference system [cf. eq. (16) below] and AH(r) in eq. (12) is given by

AH(7) = Htp(r), q(r), P(r), Q(r)] - H1 ,-f [pref (r), qref (r), Pref (r), Qref()] - (13)
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The subscripted variables here refer to the reference system Hamiltonian and the trajec-

tories on that inverted potential [cf. eq. (4) written for the reference system], while the

unsubscripted variables refer to the actual system. Equation (12) can. of course, be written

as a product over a series of intermediate reference states in the form of a thermodynamic

charging algorithm. As an alternative to the reference state/charging procedure, one could

instead employ umbrella sampling [16] to calculate the flux-weighted distribution function

relative to the reactant state.

As demonstrated by Chapman. Garrett, and Miller [8], the SCTST formula in eq. (9)

can describe the tunneling effects in gas phase atom-diatom activated rate processes and,

as discussed in the next section, there is every reason to expect the same will be true in the

condensed phase. Chapman, et al. also mentioned that one could run classical trajectories

to estimate the dynamical recrossing effects. These trajectories would be initiated from the

top of the barrier with initial conditions weighted by the semiclassical distribution function

in eq. (7). Although CGM did not carry out such a calculation, we believe this suggestion

has considerable merit, particularly in light of the more recent development of the classical

reactive flux correlation function formalism [3]. The latter formalism, which readily carries

over to the semiclassical case, allows one to efficiently calculate the dynamical corrections

to the classical TST rate constant.

In order to develop a semiclassical reactive flux correlation function expression, one

must first define a dynamical correction factor rsc to the SCTST rate constant in eq. (9),

i.e.,

ksc = nsckSCTST , (14)

where ksc is a semiclassical forward rate constant which includes the transition state

recrossing effects relative to the SCTST value of the rate constant. These dynamical

effects are quantified in the value of the semiclassical dynamical correction factor ,sc,

given as a function of time by

rcsc(t) = (h[q(t) -q*])+ - (h[q(t) - q*])jo , (15)

-7-



where the symbol ("'),± denotes classical trajectories [p(t), q(t), P(t), Q(t)] which have

positive ("+") or negative ("-") initial reaction coordinate momenta. The reactive flux

trajectories in eq. (15) have initial conditions generated from a semiclassical flux-weighted

distribution function WSC(p, q, P, Q), given by

wSC(p,q,P,Q) = (QRh) -N (q* - q) -mexp _-I drH(Tr) (16)
J~ 2m TO I

It should be noted that the classical trace of the semiclassical flux-weighted distribution

function yields the SCTST rate constant in eq. (9), i.e.,

kSCTST = TrCL [WSC(p,q,P,Q)] (17)

The semiclassical reactive flux correlation function in eq. (15) is calculated (i.e., the

trajectories are propagated) until it reaches a "plateau" value [3]. After that point, the

value of rcsc is essentially constant and can be easily determined. It should also be noted

that the dividing surface in eq. (16) can be optimized to minimize the recrossing effects

and hence improve the accuracy of the SCTST rate constant in eq. (17). However, the

semiclassical flux through different dividing surfaces may not be invariant with respect to

the choice of the dividing surface. This inconsistency can be readily eliminated, albeit at

some cost in computational effort (see the Appendix).

Equations (14) and (15) represent a unified computational methodology for describing

tunneling effects (via kSCTST) and dynamical recrossing effects (via Ksc) in thermally

activated rate processes. There is no doubt that much of the CGM formulation, as well

the present reactive flux extension of that theory, has a somewhat ad hoc character (i.e., it

has not been derived from first principles). To formulate the above equations, or equations

like them, using a completely systematic semiclassical analysis will require a new and better

understanding of the quantum-classical correspondence principle. This rather substantial

challenge will be reserved for future research. However, as will be shown in the next section,

the above semiclassical methodology also has many appealing characteristics within the

context of quantum activated dynamics, not the least of which is its clear computational
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power for studying highly nonlinear, complex systems. In fact, it is the latter feature of

the method which mitigates to some degree the lack of rigor in its formulation.

3. Applications

3.1. One-dimensional Barrier Crossing Problems

Much about the characteristics of the basic SCTST formula in eq. (9) can be un-

derstood by analysis of a simple one-dimensional barrier crossing problem. For example,

CGM have already demonstrated that eq. (9), for the choice of ro = h,3/4, gives the exact

result when the barrier potential Vb(q) is approximated to be an upside-down parabola

[i.e., Vb(q) • Vo - (1/2)mw'(q - q*) 2 ]. This result, however, is essentially a "higher"

temperature result, being valid only for temperatures such that hf3wb < 21r.

For temperatures below the one-dimensional crossover temperature (i.e., for ?h/ 3wb >

27r), the SCTST formula in eq. (9) can be tested numerically. Indeed, CGM have presented

results for the Eckart barrier and for the collinear H + H2 reaction which were in good

agreement with the known exact results. But why the good agreement? In this regard,

it proves to be quite instructive to carry out a more in-depth analysis of the dominant

contributions to the phase space integral in eq. (9) for a non-quadratic barrier potential

such as a symmetric Eckart barrier [Vb(q) = Vocosh- 2 (aq/2)]. For this (or any) one-

dimensional system, the integral over the reaction coordinate q in eq. (9) is, of course,

fixed at q* by the delta-function. The integral over the momentum must be performed,

however. These values of momenta provide the initial conditions for the trajectories which

are propagated on the upside-down barrier potential, -Vb(q), in the calculation of the

exponential weighting function in eq. (9). In fig. 1, the flux-weighted distribution function

is plotted for a symmetric Eckart barrier of height 2000 cm- 1 and lengthscale a = 5.73

]A-' at 125 K. It is seen that the distribution function is strongly peaked at a certain

value of reaction coordinate momentum given by p,,m . In fig. 2, the imaginary time

trajectory [cf. eq. (4)] on the upside-down Eckart barrier potential is plotted for the initial

conditions (Pmax, q*), where q* equals zero in this case. From this initial condition, the

trajectory is propagated backward in time to the time -ro = -ho3/4 and forward in time

-9-



to -0 = hl/4. It is seen from fig. 2 that the trajectory exactly reaches the classical turning

point (dashed lines) of the inverted barrier potential. Thus, this trajectory is precisely the

WKB trajectory for tunneling through the barrier. Stated differently, the trajectory shown

in fig. 2 is exactly one-half of the well-known semiclassical periodic orbit, or "kink-pair",

trajectory from instanton theory [7,9]. (It should be noted that the SCTST expression in

eq. (Q) requires only one-half of an instanton periodic orbit because of the factor of two in

the exponent.)

Actually, it is no accident that the instanton dynamics dominates the value of the

SCTST formula in eq. (9) at low temperatures. In general, a steepest descents analysis

of the exponential in eq. (9) below the crossover temperature will locate two dominant

contributions to that term: the aforementioned instanton trajectory and the "trivial"

stationary trajectory solution for the initial conditions p = 0, q = q*. However, the latter

contribution to the exponential, which is quite large, cannot contribute to the flux-weighted

distribution function in eq. (16) which underlies the SCTST expression [eq. (9)]. This

feature of the theory arises because the term fp( in the flux-weighted distribution insures a

weight of zero for the p = 0, q = q* contribution to the semiclassical phase space integral.

As a result of this feature, the basic SCTST formula in eq. (9) will always have a value

very close to the instanton result for temperatures below crossover. Thus, in view of this

low temperature analysis and the higher temperature parabolic barrier analysis [8], it can

be concluded that the SCTST formula can be faithfully used at all temperatures, providing

a stable, continuous theory for the rate constant above, below, and through the crossover

region. (This very appealing property is also a characteristic the theory has in common

with the path integral QTST [10]). In order to highlight the accuracy of the SCTST

formula in eq. (9) as a function of temperature, Table I lists results computed with that

formula for the symmetric Eckart barrier quantum corrections versus the known exact

results [17].

3.2. A Two-Dimensional Test of the Reactive Flux Method

The previous subsection contains a discussion of the ability of the basic SCTST for-

mula in eq. (9) to accurately describe tunneling effects. In this subsection, a test of the

- 10-



semiclassical reactive flux formulation in eqs. (14)-(16) is presented. In order to do this,

the reactive flux was studied for a non-quadratic barrier potential which is bilinearly cou-

pled to a harmonic oscillator. Exact quantum reactive flux results exist for this system

[181, and it has also been studied by other approximate methods. The Hamiltonian used

in these studies is given by

H = 2 + p + vb(q) + W2(Q±- cq) 2  (18)

where A is a reduced mass, c is the coupling between modes, and W the bath mode frequency.

The reaction coordinate potential was chosen to be a symmetric Eckart potential

Vb(q) = Vosech 2 (aq/2) . (19)

where a is a length parameter, V0 is the barrier height, and the frequency of motion on

the top of the Eckart barrier is defined by wb = -a 2 Vo/(2p).

The coupling constant c in eq. (18) was determined by the first term in a cosine

Fourier representation of a Gaussian friction kernel such that [18]

c2=P1 2 22`ath2 J dtcos(wt)r7 (t)

2f wbla 2 exp[--(wa) 2/2] (20)
T bath (Wa) 2

where a determines the timescale of the friction kernel. The variable f here is a reduced

friction parameter, given by 27O/II]WbI, and 770 is the zero time value of the friction.

In the calculations, the barrier height was taken to be 3425.3 cm- 1 , the lengthscale a

to be 3.97 A-', the reduced mass p equal to 0.672 amu, and the barrier frequency Wb to be

1164.0 cm- 1. For the bath, the decay parameter a was chosen to be 86.6 fs and the bath

fequency w to be 48 cm- 1. The timescale parameter hbath in eq. (20) was set equal to 2a.

(This model is referred to as the "slow friction" in ref. [18].) In the calculations, 2000 sets

of initial conditions were generated using the SC flux weighted distribution function in eq.

(16). From this set of initial conditions, 2000 trajectories were then run, each for 1 ps, to

- 11 -



calculate KSC from eq. (15). The calculations were performed at temperatures of 200K

and 300K.

As can be seen from Figs. 3 and 4, the combined semiclassical theory in eqs. (14)-(16)

(i.e., SCTST with reactive flux corrections) is in very good agreement with the exact

quantum results. On the other hand, the SCTST rate constant alone is not in good

agreement with the exact results. One can conclude, therefore, that the inclusion of the

semiclassical dynamical correction factor in eq. (15) is essential for the accuracy of the

method at large couplings. At intermediate couplings, the semiclassical reactive flux result

drops drops too far below the exact results, particularly at 200 K. This regime is due to an

interesting, but pathological, feature of this two-mode problem which leads to metastable

trapped classical trajectories in the transition state region. Such trapping regions in phase

space are far more pronounced in two-dimensional potentials for which locally integrable

classical motion can rigorously segment phase space into disjoint regions [19]. In many-

dimensional condensed phase systems, this behavior will be far less likely to occur.

3.3. Parabolic Barrier Coupled to a Multidimensional Bath Model

To this point in the present manuscript, the SCTST rate constant and SC reactive

flux method have been applied to low-dimensional test cases. These models were chosen, of

course, because exact results are essentially non-existent for .many-body quantum activated

rate problems. One exception to this rule, however, is the many-dimensional parabolic

barrier potential. This potential is given by

N /81~,)= .. 22 1° 2(C 1

V(q,o bq ±Z iiw? Q± + ' q (21)
i=1

where Wb is the magnitude of the unstable barrier frequency, the constants ci are the

coupling constants between the reaction coordinate and the bath modes, and the bath

mode frequencies and masses are given by wi and mi, respectively. The bath modes in the

above Hamiltonian are chosen to model the linear force fluctuations from a bath on the

reaction coordinate [20].

For relatively few degrees of freedon, the multidimensional parabolic barrier problem

-12-



is trivial because a normal coordinate rotation can be readily performed to separate the

true unstable reactive normal mode p from the stable orthogonal vibrations {yj }. However,

for an infinite number of bath oscillators as in condensed phase problems. the normal mode

transformation can only be defined formally. Even so, if such a transformation is performed

to find the many-dimensional set of normal modes, then the SCTST in eq. (9) can still be

applied to the Hamiltonian arising from eq. (21), but with the dividing surface chosen to

be along the true multidimensional reactive mode p [21,22] rather than along the "simple"

reaction coordinate q as is written in eq. (9). In this case, the result for the rate constant

can be obtained analytically and is given by the exact result [221:

kBT hOAf' Nosc 1
kSCTST = hQ--/ si '01:2: 12 h exp(-/_3Vo) , (22)

nQR (hf3A 0/ i 2sinh(7lfA,/2)

where At is the magnitude of the frequency of the multidimensional reactive normal mode

and the frequencies {Aj } are the frequencies of the stable modes orthogonal to the reaction

coordinate. The continuum (Nose --* oo) limit of the multidimensional parabolic result is

given by [22,23]

k - kBT At0 0l~
ksCTST Wb -'I + Q2 - W2 exp(-/3Vo) (23)kSCTST = R W-b n= 12 n b + Qlný(Qn)/M

where Q, equals 27rn/h3, •4(...) is the Laplace transform of the friction kernel along the

coordinate q, and A0 is given from the solution of the well-known Grote-Hynes relationship

[24]

_ Wb2 (24)

The result in eq. (23) can be shown [23] to provide an accurate description of quantum

activated dynamics for reactive systems coupled to linearly responding condensed phase

environments which are above the multidimensional crossover temperature (i.e., for hO/0 <

27r).

The result in eq. (23) is, of course, the exact result [22,23]. It is therefore concluded

that a rotation of the dividing surface in the basic SCTST rate constant expression can
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improve the accuracy of the theory-at least for the parabolic sy:-tem. The question arises,

however, as to whether a calculation using the semiclassical reactive flux method with a

flux-weighted distribution function for an unrotated dividing surface [cf. eq. (16)] will

achieve the same result. As it turns out, such a calculation will always give the exact rate

constant. To prove this, one first transforms the multidimensional quadratic Hamiltonian

for the potential in eq. (21) into the separable normal mode form [21,22]

H + -( 1 o? (25)

j=1

where, for convenience, Vo in eq. (21) is taken to be zero. Since the Hamiltonian is

separable in this coordinate system, one can readily uncover the initial conditions for the

trajectories which will always proceed from reactants to products. These conditions are

represented by the characteristic function X(p,, p) = h(p,)h(p2-_,\o2 p2), where h( ... ) is the

unit step function. This function simply states that any trajectory with an initial positive

momentum along the true multidimensional reaction coordinate p and an energy above

the barrier along that coordinate will be reactive (i.e., it will contribute a weight of unity).

The calculation of the semiclassical reaction rate from eqs. (14) - (17) is then equivalent

to averaging the characteristic function with the semiclassical flux-weighted distribution

function in eq. (16). A somewhat lengthy, but straightforward, evaluation of Gaussian

integrals then leads to the result that the semiclassical reactive flux calculated with the

semiclassical procedure specified by eqs. (14) - (17) will be exact for the many-dimensional

parabolic model.

Results are shown in Fig. 5 for the numerically determined (exact) transmission

coefficient for the parabolic barrier model with a barrier frequency of 1000 cm-1 and a 100

discrete oscillator bath [251. The bath was chosen to model an exponential friction kernel

with a decay constant of 4wb-1. The strength of the friction is characterized here by the

dimensionless quantity 71(0)/mwb, where 77(0) is the zero time value of the friction kernel.

The reactant partition function was assumed to be given by a harmonic oscillator potential

along the q direction with a frequency of vy'wb which is also coupled to the oscillator bath.

The numerical stability and relative simplicity of this multidimensional calculation bodes
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well for applications of the semiclassical method to other, more complicated, many-body

systems-at least above the crossover temperature.

3.4. Escape from a Metastable Well in a Dissipative Medium

Rips and Pollak [26] have presented a theory for the quantum mechanical escape

rate of a particle out a metastable well in the presence of a dissipative medium. Their

theory is valid in the case of a linearly responding bath and for temperatures above the

multidimensional crossover temperature. The Rips-Pollak expression for the quantum

mechanical escape rate is given by [26]

k =-O A T exp(-/3Vo) , (26)
21r wb

where Vo is the barrier height, wo is the well frequency, Wb is the barrier frequency, and At0
is the Grote-Hynes reactive frequency (cf. eq. (24)]. The factor _ in eq. (26) accounts for

the particle tunneling in the presence of the dissipation and, following the notation in eq.

(23), is given by

"0o
H = - +,W2 + n?3 (Qn)lm (27)

The important new feature in the Rips-Pollak expression is the quantum mechanical de-

population factor T, given by

Oh Lsn dr/2)In[l - P(T - i/2)]0/(8
cosh('rI37i) - cos(I37l 02)

In this equation, P(r - i/2) is the Fourier transform of the quantum mechanical transition

probability, given in terms of the set of stable normal mode frequencies {Aj } by

P(T- i/2) = exp - i= sh(Oh~/ 2cos(r)/3hAi)I] (29)

where the quantities v, are given by
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2 +00 2
Vi= gi dtIet tI F(ti) (30)2hA,

The term F(t) here is the time-dependent zero-order force acting on the unstable normal

mode p such that

F(t) = O0 0  1/21OVNL(q) (31)

aq q=m 1/ 2 uOOp

where VNL(q) is the nonlinear part of the barrier potential, defined as VNL = Vb(q) +

(1/2)mw2q 2 . The projection of the barrier coordinate q onto the unstable multidimensional

normal mode p and the stable normal modes {fy} is determined by the transformation [21]

No, c

q = uoop + Z ,0yt (32)

The constants g, in eq. (30) are defined by the relation gi - uio/uoo. More details about

the Rips-Pollak theory can be found in ref. [26].

The present semiclassical reactive flux formalism was applied to a cubic barrier po-

tential coupled to a linearly responding bath with an exponential friction kernel. The

potential along q was given by

1 2 2 _a 3 (3
Vb(q) = v0 - (33)bq 3 q ,

where a2 = (mw2) 3 /6VO. In the simulations, the barrier height V0 was given a value of

3425.3 cm- 1 and the relevant particle frequencies were chosen to be Wb = wO = 1000 cm-I.

The linearly responding bath was modeled by 100 harmonic oscillators as in our earlier

work on classical activated dynamics [25]. The exponential decay timescale of the bath

friction kernel was chosen to be 4 wb-1 . As in Sec. 3.3, the strength of the friction was

characterized by the dimensionless quantity 77(0)/mw', where 77(0) is the zero time value

of the friction kernel.

The results from the semiclassical -eactive Flux calculations for the cubic well model are

depicted in Fig. 6 and compared to the analytic results from the Rips-Pollak theory. Also
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shown for comparison are the analytic classical result from the theory of Pollak, Grabert,

and Hainggi (PGH) [27]. As in the classical theory, there are two mechanistic pictures

required to analyze the escape rate of the particle from the well as a function of friction

strength [2]. At low friction, the dynamics is determined by the rate of energy exchange

between the particle in the well and the bath. As the coupling increases in this regime, the

rate increases. At high frictions, thermal equilibrium is maintained in the well and the rate

is determined by passage over (or through) the barrier. Therefore, at high frictions, the

rate decreases as the coupling increases. This phenomenology is, of course, the standard

Kramers picture of activated dynamics (28], and the quantum mechanical modifications of

that behavior are evident from Fig. 6. The agreement between the SC reactive flux and

Rips-Pollak theory is quite encouraging and again suggests that the semiclassical theory

will be useful for complicated condensed phase problems.

3.5. Double Well in a Linearly Responding Dissipative Bath

As a final test of the SCTST and the semiclassical reactive flux formalism, the rate

constant was calculated in the region of the crossover temperature for a double well barrier

potential coupled to a linearly responding bath. The crossover temperature in this case

can be estimated by the usual relationship

Tcr = hA71/(2irkB) , (34)

where At0 is the Grote-Hynes reactive frequency in eq. (24). IT these calculations, a quartic

double well was employed of the form

Vb(q) =Vo - 2w'q2 m 2wb4 q4 (35)Vb~) V -•mbq + 6

This quartic double well has the property that the well frequency, wo, is related to the

barrier frequency, Wb, such that wo = V2Wb.

The specific values of the paramters were again Wb = 1000 cm- 1 and V0 = 3425.35

cm-1. The bath was again modeled by 100 discrete oscillators [25], having a friction kernel

with timescale 4wu"- and strength 770/pw2 = 1.0. For this value of the friction, the unsta-
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ble normal mode frequency At is - 530 cm- 1 ; the corresponding crossover temperature

being -• 125 K. Semiclassical calculations were then performed at 100K. 125K. and 150K.

The results for the semiclassical rate constant [eq. (14)] and the semiclassical transmission

coefficient [eq. (15)] are tabulated in Table II. For the sake of comparison, the semiclassical

transmission coefficient at 300 K was found to have a value of 0.68. There are no exact

quantum results here with which to compare the semiclassical calculations, but the semi-

classical transmission coefficient exhibits an interesting drop in value as the temperature

is lowered through the crossover temperature. This result is in general agreement with

the behavior predicted by an analytic theory [13] for the transmission coefficient in path

integral QTST below the crossover temperature.

4. Concluding Remarks

In the present paper, a semiclassical transit.-n state theory proposed by Chapman,

Garrett, and Miller [8] has been "rediscovered" and analyzed within the context of con-

densed phase reaction rate theory. For the cases studied, it was found that the basic SCTST

formula [eq. (9)] is capable of accurately treating activated rate processes over a wide range

of temperatures, including in the strongly tunneling regime. The relationship of the theory

to the more widely known instanton theory [7,9] has also been elaborated. A significant

extension of the theory to include dynamical dividing surface recrossing effects has been

presented in the form of a semiclassical reactive flux correlation function formalism (eqs.

(14)- (16)]. The accuracy of this formalism was tested against several model and analytical

results and found to be quite good. The great strength of the method is the ease with

which it can be numerically applied to nonlinear, many-body systems. Moreover, many of

the molecular dynamics and Monte Carlo sampling techniques from statistical mechanics

can be combined with the formalism. The method is likely to be broadly applicable to a

variety of important problems, including proton transfer, adiabatic electron transfer, and

the diffusion hydrogen on material surfaces. Some of these applications will be reported

in future publications.
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Appendix

As stated in the main text, one can imagine an optimization of the dividing surface in

eq. (16) to minimize recrossing effects in the calculation of the semiclassical transmission

coefficient [eq. (15)]. In such a procedure, however, the semiclassical flux may not be

invariant with respect to the choice of the dividing surface-as it must be in an exact

calculation. Although this negative aspect of the formulation will probably not introduce

major errors, one can in fact modify the method to make the flux independent of the

dividing surface. In order to do this, a semiclassical effective Hamiltonian can be defined

as

HsC= -kBTln[Wsc(p,q)] , (Al)
AAef f

where the semiclassical density Wsc(p, q) is given by eq. (7). This effective Hamiltonian

is then used to generate the recrossing trajectories in the calculation of the semiclassical

transmission coefficient [eq. (15)]. The equations of motion are given in this case by

Hamilton's equations, but with the classical Hamiltonian replaced by the semiclassical

effective Hamiltonian Hs. Clearly, solving these equations will be more computationallyelf"

demanding than the usual classical equations.
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TABLE I. Comparison of Tunneling Corrections for the Symmetric Eckart Barrier.

Temperature SCTST Results' Exact Resultsb

125.6 1686.0 1970.0

150.7 144.4 162.0

188.3 20.3 22.0

251.1 4.9 4.2

301.3 2.9 3.1

376.7 2.0 2.1

502.2 1.5 1.5

753.3 1.2 1.2

aEquation (9)

bFrom ref [17].
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TABLE II. Rate Results for the Double Well in a Dissipative Bath.

Temperature Ksca Rate (s-I)b

150 0.91 1.5 x 10-2

125 0.87 7.9 x 10-4

100 0.40 2.0 x 10-8

a Equation (15). The numerical error is 5% on the two higher

temperature results and 20% on the lowest.

bEquation (14)
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Figure Captions

Fig. 1: A plot of the semiclassical flux-weighted distribution function [eq. (16)] as a function

of initial momentum for a symmetric Eckart barrier at T = 125K.

Fig. 2: The imaginary time trajectory on the upside down Eckart potential corresponding

to the initial condition (Praz, 0) which give the maximum value of the flux-weighted

distribution function in Fig. 1. The trajectory is propagated forward in time to h,3/4

and backward in time to -hf,/4. The dashed lines are the classical turning points on

the inverted Eckart barrier potential for this initial condition.

Fig. 3: Plots of the reactive flux for the two-dimensional model in Sec. 3.2. The results

are from the SCTST expression [eq. (9)], the semiclassical expression which includes

the semiclassical transmission coefficient [eq. (14)], and exact quantum wavepacket

calculations (18] at 200K.

Fig. 4: Same as in Fig. 3, but for a temperature of 300K.

Fig. 5: A plot of the numerically determined semiclassical rate constant [eq. (14)] for a

parabolic barrier potential linearly coupled to 100 bath oscillators as a function of the

friction. The solid line is the exact analytic result. The reactant partition function is

assumed here to be for a harmonic oscillator potential coupled to the same bath as at

the barrier.

Fig. 6: A comparison of the rate constant for a metastable cubic well in a dissipative 100

oscillator bath as calculated from the Rips-Pollak, PGH, and semiclassical [eq. (14)]

theories at 300K (see Sec. 3.4).
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